The Early Work Experiences of Recent Graduates in Engineering.

Russell F. Korte, University of Illinois Urbana-Champaign Sheri D. Sheppard, Stanford University William C. Jordan, Collaborative Research Lab, Stanford University

American Society for Engineering Education Conference, June 22-25, 2008

Introduction

- Employers reported new graduates adequate/well-prepared in science and technical skills (problem solving); inadequate in communication and teamwork skills (*Lattuca*, *Terenzini*, & *Volkwein*, 2006)
- Ongoing debate about relevance of current curricula, competencies, and attributes.
- Recent efforts to expand engineering criteria to include socially and design-based curricula.
- This paper focused on the engineering experiences of new engineers (17) in a workplace.

Research questions

- How do newly hired engineers learn the specific job requirements of the workplace?
- How do newly hired engineers practice engineering in the workplace?
- What are the factors affecting how newly hired engineers begin practicing engineering in the workplace?

Theoretical Frame

- Social cognitive theory—learning what to do; how and why in the social system of the workplace.
- Social exchange theory—ongoing interactions between people guided by rules (norms).
- Socialization—a critical period for learning requirements and expectations of work and forming enduring perceptions of work and profession.

Findings

- Engineering described as a problem-solving process.
- Problem-solving process embedded in and moderated by:
 - The social system of the work group.
 - The norms and systems of the organization.
 - Individual preferences.

Problem-solving process

- Gathering and manipulating data described as "real engineering work."
- Process heavily based on communication and teamwork (social interaction and influence)
 - Organize, define, and understand problem.
 - Gather, analyze, and interpret data.
 - Document and present results.
 - Project manage process.

Social system of work group

- Managers and coworkers had certain expectations and a preferred way of doing things.
- New grads relied on coworkers to help interpret ambiguous processes and data: "*Why are we doing this? What exactly is this doing?*"
- Lack of documentation forced new grads to rely on coworkers for help. This help was based on the quality of relationships.

The Organizational System

- Learning the "big picture." "... get oriented to the whole system, because the system is absolutely, ridiculously huge."
- Understanding non-engineering priorities and decisions. *"Okay, so a lot of things can't change."*
- Working through cultural and systems procedures. "when people are sticklers for the process, you run into a lot of problems."

Managing Individual Effort

- Desire to gain experience and increase expertise.
- Become intimately familiar with job.
- Meet and exceed objectives.
- Contribute value to the organization.

Summary of Work Experiences

Categories of Work Experiences	Work Experiences
Problem-Solving Process	 Organize, define, & understand the problem Gather, analyze, & interpret data Document and present results Manage the overall problem-solving process
Working within the Group (social system)	 Develop relationships with others Learn from others Collaborate with others Influence others
Working within the Organizational System	 Learn the 'big picture' Understand non-engineering priorities and decisions Work through cultural and systems procedures
Managing Individual Effort	 Gain experience to increase expertise Become intimately familiar with job and data Effectively manage efforts to exceed objectives Contribute value to the organization

,

Problem-solving process.

Experiences in the workplace.

- Not doing "real engineering" work. "I don't feel like I've had to actually do engineering."
- **Problems highly uncertain, ambiguous, complex.** "in the real world, it's a lot more difficult to model things. It's just there's a lot more variables involved and there's the unsurety too of whether or not you're modeling it right."
- More practical, hands-on work. "there's no mathematical formula you could use like you would in school to solve this kind of problem."
- Work is socially and culturally embedded. "It's a huge difference in how people perceive your data depending on how much they know."

Conclusions

- Engineering problems often ill-structured: (Jonasson, Strobel, & Lee, 2006)
 - Multiple, often conflicting goals
 - Multiple solutions
- The problem-solving process embedded in legacy of local custom, social preferences, and organizational constraints.
- Most work involves communicating and collaborating with others.

Implications for Engineering Education

- Greater emphasis on ill-structured problems embedded in fickle social contexts.
 - Messy problems that change over time.
 - Multiple, conflicting goals, priorities, and interpretations.
- Increase use of problem-based learning and cooperative learning.
 - Maximize social cooperation, collaboration, and interdependence.
 - Quality of interactions and experiences is important.

